SPAN® SPAN-IGM-S1™

SPAN MEMS TECHNOLOGY INTEGRATED WITH NOVATEL’S POWERFUL OEM615™ RECEIVER

SPAN: WORLD LEADING GNSS+INS TECHNOLOGY
Synchronous Position, Attitude and Navigation (SPAN) technology brings together two different but complementary technologies: Global Navigation Satellite System (GNSS) positioning and inertial navigation. The absolute accuracy of GNSS positioning and the stability of Inertial Measurement Unit (IMU) gyro and accelerometer measurements are tightly coupled to provide an exceptional 3D navigation solution that is stable and continuously available, even through periods when satellite signals are blocked.

SPAN-IGM-S1 RECEIVER
The SPAN-IGM-S1 features Sensonor’s STIM300 MEMS IMU, a compact, high performance sensor with centimetre-level accuracy. Combined with the NovAtel OEM615 receiver, the SPAN-IGM-S1 offers exceptional performance in a small, lightweight, all-in-one package.

This product is commercially exportable and provides the best price/performance/size available in the market.

ALIGN® ENABLED
Building on NovAtel’s successful SPAN-SE-D enclosure, we offer our ALIGN heading solution as an option on the SPAN-IGM-S1. ALIGN can be activated by pairing the SPAN-IGM-S1 with an external ALIGN enabled receiver such as our FlexPak6™.

IMPROVED ACCURACY
NovAtel CORRECT™ with RTK improves real-time performance and accuracy. For more demanding applications, Inertial Explorer® software from our Waypoint® Products Group can be used to post-process SPAN data to provide the highest level of accuracy.

BENEFITS

+ SPAN enabled enclosure featuring NovAtel’s tightly coupled OEM615 GNSS+INS engine
+ Tactical grade IMU performance
+ Commercially exportable IMU
+ Can be paired with an external receiver to support ALIGN GNSS azimuth aiding for low dynamic applications
+ Small, lightweight and rugged
+ Ideal for airborne, ground and marine applications

FEATURES

+ Metre to centimetre-level accuracy
+ Regulated 10–30 VDC input
+ 125 Hz navigation solution and raw measurement output
+ Serial, USB, CAN and Multi I/O interface including dedicated wheel sensor input
+ GPS, GLONASS, SBAS and RTK support

If you require more information about our SPAN products, visit www.novatel.com/span
SPAN-IGM-S1™

SPAN SYSTEM PERFORMANCE

OEM615 SPAN© tightly coupled RTK GNSS+INS engine

Horizontal Position Accuracy (RMS)

- Single point L1/L2: 1.2 m
- NovAtel CORRECT™
 - SBAS: 60 cm
 - DGPS: 40 cm
 - RTK: 1 cm + 1 ppm

Data Rates

- GNSS measurement: 20 Hz
- GNSS position: 20 Hz
- IMU measurement: 125 Hz
- INS solution: Up to 125 Hz

Time Accuracy

- 20 ns RMS

Max Velocity

- 515 m/s

PHYSICAL AND ELECTRICAL

Dimensions

152 x 142 x 51 mm

Weight

540 g

Power

- Input voltage: 10–30 VDC
- Power consumption: 6 W

Antenna LNA Power Output

- Output voltage: 5 VDC ±5%
- Maximum current: 100 mA

Connectors

- Main port & AUX port DB-HD15
- Antenna TNC

COMMUNICATION PORTS

- 1 USB: 12 Mbps
- 1 RS-232 or RS-422: 921,600 bps
- 1 CAN port: 1 Mbps

Inputs/Outputs

- 2 Event input triggers
- 1 Configurable PPS
- 1 Wheel sensor port
- 1 VARG

Status LEDs

- Power
- GNSS status
- INS status

ENVIRONMENTAL

- **Temperature**
 - Operating: -40°C to +65°C
 - Storage: -50°C to +80°C

- **Humidity**
 - MIL-STD-810G
 - 95% Non-condensing

- **Vibration (operating)**
 - Random: MIL-STD-810G (7.7 g)
 - Sinusoidal: IEC 60068-2-6 (5 g)
 - Bump: IEC 60068-2-27 (25 g)
 - Shock: MIL-STD-810G (40 g)

- **Immersion**
 - IEC 60529 IPX7

- **Compliance**
 - FCC, CE, Industry Canada

INCLUDED ACCESSORIES

- Combined power, data, and I/O cables

OPTIONAL ACCESSORIES

- Inertial Explorer post-processing software
- GPS–700 series antenna
- RF cables
- NovAtel Connect™ GUI software
- SPAN–IGM bracket kit for ALIGN

OPTIONAL CONFIGURATION

- Available OEM615 options:
- GLOMASS
- ALIGN®
- Stackable with FlexPak6 for an ALIGN solution (shown)

For the most recent details of this product: www.novatel.com/products/span-gnss-inertial-systems/span-combined-systems/span-igm-s1/

NovAtel sales@novatel.com
1-800–NOVATEL (U.S. and Canada) or 403-295-4900
China 0086-21-68882300
Europe 44-1993-848-736
SE Asia and Australia 61–400–883–601

PERFORMANCE DURING GNSS OUTAGES

<table>
<thead>
<tr>
<th>Outage Duration</th>
<th>Positioning Mode</th>
<th>POSITION ACCURACY (M) RMS</th>
<th>VELOCITY ACCURACY (M/S) RMS</th>
<th>ATTITUDE ACCURACY (DEGREES) RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>0 s</td>
<td>RTK®</td>
<td>0.02</td>
<td>0.03</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>1.00</td>
<td>0.60</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>PP®</td>
<td>0.01</td>
<td>0.02</td>
<td>0.020</td>
</tr>
<tr>
<td>10 s</td>
<td>RTK®</td>
<td>0.27</td>
<td>0.14</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>1.22</td>
<td>0.71</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>PP®</td>
<td>0.02</td>
<td>0.02</td>
<td>0.020</td>
</tr>
<tr>
<td>60 s</td>
<td>RTK®</td>
<td>6.61</td>
<td>1.46</td>
<td>0.280</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>7.56</td>
<td>2.03</td>
<td>0.280</td>
</tr>
<tr>
<td></td>
<td>PP®</td>
<td>0.22</td>
<td>0.10</td>
<td>0.024</td>
</tr>
</tbody>
</table>

1. Typical values. Performance specifications subject to GPS system characteristics, US DOD operational degradation, ionospheric and tropospheric conditions, satellite geometry, baseline length, multipath effects and the presence of intentional or unintentional interference sources.
2. For detailed receiver specifications, see NovAtel’s OEM615 product sheet and Receiver brochure.
3. GPS–only.
4. Time accuracy does not include biases due to RF or antenna delay.
5. Export licensing restricts operation to a maximum of 515 metres/second.
6. Supplied by IMU manufacturer.
8. For additional information on optional configurations, see our firmware options on our web site or contact NovAtel for more information.
9. ALIGN requires a secondary GNSS receiver paired with the SPAN enclosure.
10. 1 ppm should be added to all position values to account for additional error due to baseline length.
11. Post-processing results using Inertial Explorer software. The survey data used to generate these statistics is ground vehicle data collected with frequent changes in azimuth (i.e., normally observed in ground vehicle environments).