ABOUT SPAN: WORLD-LEADING GNSS+INS TECHNOLOGY
Synchronous Position, Attitude and Navigation (SPAN) technology brings together two different but complementary technologies: Global Navigation Satellite System (GNSS) positioning and Inertial Navigation Systems (INS). The absolute accuracy of GNSS positioning and the stability of Inertial Measurement Unit (IMU) measurements combine to provide an exceptional 3D navigation and attitude solution that is stable and continuously available, even through periods when satellite signals are blocked.

SOPHISTICATED, TACTICAL GRADE MEMS PERFORMANCE
The IMU-HG1900 IMU offers a hybrid package of Honeywell’s Micro Electromechanical Systems (MEMs) Gyros and RBA accelerometers. Economical, robust and small, the low power IMU-HG1900 provides high end tactical grade performance for commercial and military guidance and navigation applications. When integrated with NovAtel's SPAN technology, this IMU is ideal for airborne and ground applications that require accurate 3D position, velocity and attitude data. The IMU-HG1900 is ITAR controlled and requires export approval for customers outside the United States.

The IMU-HG1900 is available as a complete assembly in an environmentally sealed enclosure. The HG1900 is also available as a stand alone OEM product that can be easily paired with a SPAN enabled GNSS receiver.

IMPROVED ACCURACY
Take advantage of NovAtel CORRECT™ to receive your choice of accuracy and performance, from decimetre to RTK-level positioning. For the most demanding applications, Inertial Explorer® post-processing software from our Waypoint® Products Group offers the highest level of accuracy.

FEATURES
+ MEMS Gyro technology
+ Small size, rugged and light weight
+ 10-34 VDC power input
+ 100 Hz data rate
+ SPAN GNSS+INS functionality

If you require more information about our SPAN products, visit www.novatel.com/span
SPAN SYSTEM PERFORMANCE

Horizontal Position Accuracy (RMS)
- Single point L1/L2: 1.2 m
- NovAtel CORRECT SBAS: 60 cm
- DGPS: 40 cm
- PPP: TerraStar-L 40 cm, TerraStar-C 4 cm
- RTK: 1 cm + 1 ppm

Data Rate
- IMU measurements: 100 Hz
- INS position: 100 Hz
- INS velocity: 100 Hz
- INS attitude: 100 Hz

Time Accuracy
- 20 ns RMS

Max Velocity
- 515 m/s

IMU PERFORMANCE

Gyroscope Performance
- Input range: ±1000 deg/sec
- Rate bias: 5 deg/hr
- In-run bias stability: 1 deg/hr
- Scale factor linearity: ±150 ppm
- Scale factor repeatability: ±150 ppm
- Angular random walk: 0.09 deg/√hr

Accelerometer Performance
- Range: ±30 g
- Linearity: 500 ppm
- Scale factor linearity: 500 ppm
- Scale factor repeatability: 300 ppm
- Bias repeatability: 1 mg
- Bias in-run stability: 0.7 mg

PHYSICAL AND ELECTRICAL

Dimensions
- L x W x H: 130 × 130 x 125 mm

Weight
- 2.5 kg

Power
- Power consumption: 8 W (typical)
- Input voltage: +10 to +34 VDC

Connectors
- Power: SAL M12, 5 pin, male
- Data: SAL M12, 4 pin, female
- Wheel sensor: SAL M12, 8 pin, male

ENVIRONMENTAL

Temperature
- Operating: -40°C to +55°C
- Storage: -40°C to +80°C

Humidity
- MIL-STD-810G(Ch1), Method 507.6

Random Vibe
- MIL-STD-810G(Ch1), Method 514.7 (2.0g)

Environment
- MIL-STD-810G(CH1), Method 512.6 (IEC 60529 IP67)

INCLUDED ACCESSORIES

- Power cable
- Communication cable
- Wheel sensor cable

OPTIONAL ACCESSORIES

- Mounting plate
- Inertial Explorer post-processing software

For the most recent details of this product:

PERFORMANCE DURING GNSS OUTAGES

<table>
<thead>
<tr>
<th>Outage Duration</th>
<th>Positioning Mode</th>
<th>POSITION ACCURACY (M) RMS</th>
<th>VELOCITY ACCURACY (M/S) RMS</th>
<th>ATTITUDE ACCURACY (DEGREES) RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td>0 s</td>
<td>RTK</td>
<td>0.02</td>
<td>0.03</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>1.00</td>
<td>0.60</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>PP1</td>
<td>0.01</td>
<td>0.02</td>
<td>0.010</td>
</tr>
<tr>
<td>10 s</td>
<td>RTK</td>
<td>0.12</td>
<td>0.07</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>1.10</td>
<td>0.65</td>
<td>0.020</td>
</tr>
<tr>
<td></td>
<td>PP1</td>
<td>0.01</td>
<td>0.02</td>
<td>0.010</td>
</tr>
<tr>
<td>60 s</td>
<td>RTK</td>
<td>1.95</td>
<td>0.30</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>2.90</td>
<td>0.90</td>
<td>0.080</td>
</tr>
<tr>
<td></td>
<td>PP1</td>
<td>0.10</td>
<td>0.02</td>
<td>0.012</td>
</tr>
</tbody>
</table>

1. Typical values. Performance specifications subject to GNSS system characteristics, Signal-In-Space (SIS) operational degradation, ionospheric and tropospheric conditions, satellite geometry, baseline length, multipath effects and the presence of intentional or unintentional interference sources.
2. GPS-only.
3. Requires subscription to TerraStar data service. Subscriptions available from NovAtel.
4. TerraStar service available depends on the SPAN receiver used. See the receiver product sheet for details.
5. Time accuracy does not include biases due to RF or antenna delay.
6. Export licensing restricts operation to a maximum of 515 metres/second.
7. Supplied by IMU manufacturer.
8. Outage statistics were calculated by taking the RMS of the maximum errors over a minimum of 30 complete GNSS outages. Each outage was followed by 120 seconds of full GNSS availability before the next outage was applied. High accuracy GPS updates (fixed ambiguities) were available immediately before and after each outage. The survey data used to generate these statistics is ground vehicle data collected with frequent changes in azimuth (i.e., as normally observed in ground vehicle environments).
9. 1 ppm should be added to all values to account for additional error due to baseline length.
10. Post-processing results using Inertial Explorer software.