NovAtel’s ALIGN technology combines two or more receivers to generate precise positioning and heading for dynamic applications. ALIGN uses GPS, GLONASS and BeiDou to provide the best solution accuracy and availability for your application even in harsh environments. You get the accuracy you need from synchronized solutions with output rates up to 20 Hz.

ALIGN IS AVAILABLE IN TWO MODELS

ALIGN Heading™: Generates high precision heading and pitch angles between two receivers for real-time navigation.

ALIGN Relative Positioning™: Generates high accuracy heading, pitch, relative separation and positioning between two or more receivers for high precision monitoring and automation.

Plug-and-play functionality can quickly and easily create an ALIGN system that communicates through a wireless or cable link. You can also create a network of multiple ALIGN receivers that all have spatial awareness of each other.\(^1\)

ALIGN is offered on NovAtel OEM6® receiver platforms.

ALIGN Accuracy

<table>
<thead>
<tr>
<th>DUAL FREQUENCY - FIXED HEADING ACCURACY</th>
<th>0.5 m Baseline</th>
<th>1 m Baseline</th>
<th>2 m Baseline</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.40 degrees</td>
<td>0.20 degrees</td>
<td>0.10 degrees</td>
<td></td>
</tr>
</tbody>
</table>

BENEFITS AND FEATURES

+ Precise heading and pitch
+ Accurate relative positioning
+ GPS, GLONASS and BeiDou satellite availability
+ Easy to use plug and play installation
+ Easy creation of ALIGN network
+ SPAN® INS functionality

If you require more information about Firmware, visit www.novatel.com/products/firmware-options

1. Please refer to the ALIGN Application note for more use cases
 www.novatel.com/assets/Documents/Bulletins/apn048.pdf
ALIGN USE CASES

Heading Use Case: Fixed Antenna Distance between Master and Rover Receivers on One Platform

Figure 1

Figure 1 illustrates Master and Rover receivers located on the same vehicle and two antennas installed at a fixed distance from one another. Relative heading and pitch are computed with respect to the Master receiver.

Relative Positioning Use Case: Master and Rover Receivers on Separate Moving Platforms

Figure 2

Figure 2 illustrates the Master receiver located on a marine vessel and the Rover receiver located on a rotary UAV. Relative heading, pitch, baseline length and Rover positions are computed with respect to the Master receiver.